Statistical Learning

Save for laterSavedDeleted 0

👤 Join WhatsApp Learners
Deal Score0

Learn some of the main tools used in statistical modeling and data science. We cover both traditional as well as exciting new methods, and how to use them in R. Course material updated in 2021 for second edition of the course textbook.

Join Email Learners

Follow the guide on landing page

This is an introductory-level course in supervised learning, with a focus on regression and classification methods. The syllabus includes: linear and polynomial regression, logistic regression and linear discriminant analysis; cross-validation and the bootstrap, model selection and regularization methods (ridge and lasso); nonlinear models, splines and generalized additive models; tree-based methods, random forests and boosting; support-vector machines; neural networks and deep learning; survival models; multiple testing. Some unsupervised learning methods are discussed: principal components and clustering (k-means and hierarchical).

This is not a math-heavy class, so we try and describe the methods without heavy reliance on formulas and complex mathematics. We focus on what we consider to be the important elements of modern data science. Computing is done in R. There are lectures devoted to R, giving tutorials from the ground up, and progressing with more detailed sessions that implement the techniques in each chapter.

The lectures cover all the material in An Introduction to Statistical Learning, with Applications in R (second addition) by James, Witten, Hastie and Tibshirani (Springer, 2021). The pdf for this book is available for free on the book website.

  • Overview of statistical learning
  • Linear regression
  • Classification
  • Resampling methods
  • Linear model selection and regularization
  • Moving beyond linearity
  • Tree-based methods
  • Support vector machines
  • Deep learning
  • Survival modeling
  • Unsupervised learning
  • Multiple testing
Statistical Learning

PREMIUM COURSE: Learn The Ultimate WhatsApp Lead Generation Blueprint: How to get customers with Facebook Ads (CLICK HERE TO LEARN MORE!)

DISCLAIMER: Courses on Future Syllabus are free but subject to return to their original prices on host platforms upon coupon expiration. Enrol while they are free.

Silas Bamigbola

Certified Computer Engineer & Author, 'Lost Boys'. I believe in the influence of right information. Join me on Twitter.

Stay active

Leave a Reply

error: Content is protected !!
Future Syllabus
Register New Account
Login/Register via your social accounts (fully secured)

or proceed manually
Reset Password